skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seiler, Anna_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract AB-stacked bilayer graphene has emerged as a fascinating yet simple platform for exploring macroscopic quantum phenomena of correlated electrons. Under large electric displacement fields and near low-density van-Hove singularities, it exhibits a phase with features consistent with Wigner crystallization, including negative dR/dT and nonlinear bias behavior. However, direct evidence for the emergence of an electron crystal at zero magnetic field remains elusive. Here, we explore low-frequency noise consistent with depinning and sliding of a Wigner crystal or solid. At large magnetic fields, we observe enhanced noise at low bias current and a frequency-dependent response characteristic of depinning and sliding, consistent with earlier scanning tunnelling microscopy studies confirming Wigner crystallization in the fractional quantum Hall regime. At zero magnetic field, we detect pronounced AC noise whose peak frequency increases linearly with applied DC current—indicative of collective electron motion. These transport signatures pave the way toward confirming an anomalous Hall crystal. 
    more » « less